
Package: simplifyNet (via r-universe)
February 16, 2025

Type Package

Title Network Sparsification

Version 0.0.1

Language en-US

Maintainer Alexander Mercier <amercier@g.harvard.edu>

Description Network sparsification with a variety of novel and known
network sparsification techniques. All network sparsification
techniques reduce the number of edges, not the number of nodes.
Network sparsification is sometimes referred to as network
dimensionality reduction. This package is based on the work of
Spielman, D., Srivastava, N. (2009)<arXiv:0803.0929>. Koutis
I., Levin, A., Peng, R. (2013)<arXiv:1209.5821>. Toivonen, H.,
Mahler, S., Zhou, F. (2010)<doi:10.1007>. Foti, N., Hughes, J.,
Rockmore, D. (2011)<doi:10.1371>.

Depends R (>= 3.4),

Imports igraph (>= 1.3.1), sanic (>= 0.0.1), Matrix (>= 1.2-18),
methods (>= 4.0.2), stats (>= 4.0.2), dplyr (>= 1.0.9)

License GPL (>= 3)

Encoding UTF-8

RoxygenNote 7.2.1

NeedsCompilation no

Author Andrew Kramer [aut], Alexander Mercier [aut, cre, trl],
Shubhankar Tripathi [ctb], Tomlin Pulliam [ctb], John Drake
[ctb] (<https://orcid.org/0000-0003-4646-1235>)

Date/Publication 2022-11-15 16:30:02 UTC

Config/pak/sysreqs libglpk-dev libxml2-dev

Repository https://ammercier.r-universe.dev

RemoteUrl https://github.com/cran/simplifyNet

RemoteRef HEAD

RemoteSha 22431e6c830ad05363f01968c88a39b1853625b7

1

https://arxiv.org/abs/0803.0929
https://arxiv.org/abs/1209.5821
https://doi.org/10.1007
https://doi.org/10.1371
https://orcid.org/0000-0003-4646-1235

2 bestpath

Contents
bestpath . 2
EffR . 3
EffRSparse . 4
EList_Mtrx . 6
gns . 6
irefit . 7
lans . 8
Mtrx_EList . 10
net.as . 10

Index 12

bestpath Sparsification via Best Path

Description

Calculates network sparsifier from best path

Usage

bestpath(network, directed = FALSE, associative = TRUE)

Arguments

network Weighted adjacency matrix, weighted igraph network, or edge list formatted |
n1 | n2 | weight | with colnames c("n1", "n2", "weight").

directed If TRUE, specifies that the inputted network is directed. Default is FALSE.

associative Designates if the network is associative where edge weight determines "similar-
ity" or "strength" or dissociative where edge weight denotes "dissimilarity" or
"distance".
If the network is associative, then the shortest path would be found by looking
at w_e^-1 where weaker association between nodes suggests a larger distance
between nodes for shortest paths.
If the network is dissociative, then the shortest path would be between w_e.

Value

Edge list of sparsified network via best path.

Author(s)

Alexander Mercier

Andrew Kramer

EffR 3

References

Toivonen, H., Mahler, S., & Zhou, F. (2010, May). A framework for path-oriented network simpli-
fication. In International Symposium on Intelligent Data Analysis (pp. 220-231). Springer, Berlin,
Heidelberg.

Examples

#Generate random ER graph with uniformly random edge weights
g = igraph::erdos.renyi.game(50, 0.1)
igraph::E(g)$weight <- runif(length(igraph::E(g)))
#Sparsify g via bestpath
S = simplifyNet::bestpath(g, directed = FALSE, associative = TRUE) #Show edge list conversion
sg = simplifyNet::net.as(S, net.to="igraph", directed=FALSE)
igraph::ecount(sg)/igraph::ecount(g)#fraction of edges in the sparsifier

EffR Effective resistances calculator

Description

Calculate or approximate the effective resistances of an inputted, undirected graph. There are three
methods.
(1) ’ext’ which exactly calculates the effective resistances (WARNING! Not ideal for large graphs).
(2) ’spl’ which approximates the effective resistances of the inputted graph using the original
Spielman-Srivastava algorithm.
(3) ’kts’ which approximates the effective resistances of the inputted graph using the implementa-
tion by Koutis et al. (ideal for large graphs where memory usage is a concern).
The relative fidelity of the approximation methods is governed by the variable epsilon.

Usage

EffR(network, epsilon = 0.1, type = "kts", tol = 1e-10)

Arguments

network Weighted adjacency matrix, weighted igraph network, or edge list formatted |
n1 | n2 | weight | with colnames c("n1", "n2", "weight").

epsilon Variable epsilon governs the relative fidelity of the approximation methods ’spl’
and ’kts’. The smaller the value the greater the fidelity of the approximation.
Default value is 0.1.

type There are three methods.
(1) ’ext’ which exactly calculates the effective resistances (WARNING! Not
ideal for large graphs).
(2) ’spl’ which approximates the effective resistances of the inputted graph us-
ing the original Spielman-Srivastava algorithm.
(3) ’kts’ which approximates the effective resistances of the inputted graph us-
ing the implementation by Koutis et al. (ideal for large graphs where memory
usage is a concern).

4 EffRSparse

tol Tolerance for the linear algebra (conjugate gradient) solver to find the effective
resistances. Default value is 1e-10.

Details

The fidelity of the effective resistance approximation decreases with a decrease in epsilon. How-
ever, it is more important for sparsification by effective resistances that the approximations be
roughly equivalent relative to one another, as they will be normalized in a probability distribu-
tion where exact values are not needed.
The number of edges contained in the sparsifier will be less than or equal to the number of samples
taken, q.

Value

Return either exact or approximate effective resistances for each edge in the same order as "weight"
in the edge list.

Author(s)

Alexander Mercier

References

Spielman, D. A., & Srivastava, N. (2011). Graph sparsification by effective resistances. SIAM
Journal on Computing, 40(6), 1913-1926.
Koutis, I., Miller, G. L., & Peng, R. (2014). Approaching optimality for solving SDD linear systems.
SIAM Journal on Computing, 43(1), 337-354.

Examples

E_List = matrix(c(1,1,2,2,3,3,1,1,1), 3, 3) #Triangle graph, \eqn{K_3}, with edge weights equal to 1
effR = simplifyNet::EffR(E_List, epsilon = 0.1, type = 'kts', tol = 1e-10)

EffRSparse Sparsification through edge sampling via effective resistances

Description

Sparsify an undirected network by sampling edges proportional to we ∗Re where we is the weight
of edge e and Re is the effective resistance of edge e.
Approximately preserves the graph Laplacian, L, with increasing fidelity as the number of samples
taken increases.

Usage

EffRSparse(network, q, effR, seed, n)

EffRSparse 5

Arguments

network Weighted adjacency matrix, weighted igraph network, or edge list formatted |
n1 | n2 | weight | with colnames c("n1", "n2", "weight").

q The numbers of samples taken. The fidelity to the original network increases as
the number of samples increases, but decreases the sparseness.

effR Effective resistances corresponding to each edge. Should be in the same order
as "weight".

seed Set the seed to reproduce results of random sampling.

n The number of nodes in the network. Default is the max node index of the edge
list.

Details

The performance of this method is dependent on the size of the network and fidelity of the effective
resistance approximation. The network should be "sufficiently large."
For more details, see: https://epubs.siam.org/doi/epdf/10.1137/080734029

Value

A sparsified network, H, edge list where the number of edges is dependent on the number of samples
taken, q.

Author(s)

Daniel A. Spielman,

Alexander Mercier

References

Spielman, D. A., & Srivastava, N. (2011). Graph sparsification by effective resistances. SIAM
Journal on Computing, 40(6), 1913-1926.

Examples

#Generate random ER graph with uniformly random edge weights
g = igraph::erdos.renyi.game(100, 0.1)
igraph::E(g)$weight <- runif(length(igraph::E(g)))
#Approximate effective resistances
effR = simplifyNet::EffR(g)
#Use effective resistances to create spectral sparsifier by edge sampling
S = simplifyNet::EffRSparse(g, q = 200, effR = effR, seed = 150)
sg = simplifyNet::net.as(S, net.to="igraph", directed=FALSE)
igraph::ecount(sg)/igraph::ecount(g)#fraction of edges in the sparsifier

6 gns

EList_Mtrx Edge list to adjacency matrix

Description

Convert an edge list to an adjacency matrix.

Usage

EList_Mtrx(E_List, directed = FALSE, n)

Arguments

E_List Edge list formatted | n1 | n2 | weight |.

directed Specifies if the network is directed or undirected. Default is set to undirected.

n Specify number of nodes. Default is max(E_List[,1:2]).

Value

Adjacency matrix constructed from edge list, E_List, of the class dgCMatrix.

Author(s)

Alexander Mercier

gns Global Network Sparsification

Description

Remove all edges under certain edge weight threshold.

Usage

gns(network, remove.prop, cutoff, directed = FALSE)

Arguments

network Weighted adjacency matrix, weighted igraph network, or edge list formatted |
n1 | n2 | weight | with colnames c("n1", "n2", "weight").

remove.prop The proportion of highest weighted edges to retain. A value between 0 and 1.

cutoff Threshold value for edge weight thresholding.

directed If TRUE, specifies that the inputted network is directed. Default is FALSE.

irefit 7

Value

Edge list of sparsified network

Author(s)

Andrew Kramer

Alexander Mercier

Examples

#Generate random ER graph with uniformly random edge weights
g = igraph::erdos.renyi.game(100, 0.1)
igraph::E(g)$weight <- runif(length(igraph::E(g)))
#Sparsify g via GNS
S = gns(g, remove.prop = 0.5)
sg = simplifyNet::net.as(S, net.to="igraph", directed=FALSE)
igraph::ecount(sg)/igraph::ecount(g)#fraction of edges in the sparsifier

irefit Iterative refitting

Description

Iterative sparsifcation based refitting.

Usage

irefit(
network,
func,
tol,
rank = "none",
connected = FALSE,
directed = FALSE,
per = 0.5

)

Arguments

network Weighted adjacency matrix, weighted igraph network, or edge list formatted |
n1 | n2 | weight | with colnames c("n1", "n2", "weight").

func Model function whose input is the network and whose output is a single real
value or a list of reevaluated weights in the first index and a real value in the
second.
A wrapper function may have to be written.

tol Allowed error around the original output of func approximated by the sparsified
network within which edges are removed. Specifies if method converges.

8 lans

rank Ranking of edges. Lower ranked edges are removed first. Must be the same
length as nrow(E_List).

connected If TRUE, connectivity of the network is prioritized over scoring by func.

directed If TRUE, specifies that the inputted network is directed. Default is FALSE.

per Percentage of edges to add/remove from the sparsifier at each step.

Value

Sparsified network, H, which still maintains evaluator function, func, plus/minus tol.

Author(s)

Alexander Mercier

Andrew Kramer

Examples

#Set scoring function
mean.weight.degree <- function(graph){
graph.ob <- igraph::graph_from_edgelist(graph[,1:2])
igraph::E(graph.ob)$weight <- graph[,3]
return(mean(igraph::strength(graph.ob)))
}

#Generate random graph
g <- igraph::erdos.renyi.game(100, 0.1)
igraph::E(g)$weight <- rexp(length(igraph::E(g)), rate=10) #random edge weights from exp(10)
E_List <- cbind(igraph::as_edgelist(g), igraph::E(g)$weight)
colnames(E_List) <- c("n1", "n2", "weight")
sparse_dist <- simplifyNet::irefit(E_List, func=mean.weight.degree, tol = 0.1)

lans Local Adaptive Network Sparsification

Description

Remove all edges under certain probability of the fractional edge weight, alpha.

Usage

lans(network, alpha, output, directed = FALSE)

lans 9

Arguments

network Weighted adjacency matrix, weighted igraph network, or edge list formatted |
n1 | n2 | weight | with colnames c("n1", "n2", "weight").

alpha The alpha value is a predetermined threshold to designate statistically impor-
tant edges by their fractional edge weight at each node. If the probability of
choosing that edge via the CDF is less than or equal to alpha, then the edge is
not included.

output If the output should be directed or undirected. Default is that the output is the
same as the input based on adjacency matrix symmetry. If the default is overrid-
den, set as either "undirected" or "directed".

directed If TRUE, specifies that the inputted network is directed. Default is FALSE.

Details

For more information on finding alpha values, see: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0016431#s5

Value

Weighted adjacency matrix of sparsified network.

Author(s)

Andrew Kramer

Alexander Mercier

References

Foti, N. J., Hughes, J. M., & Rockmore, D. N. (2011). Nonparametric sparsification of complex
multiscale networks. PloS one, 6(2), e16431.

Examples

#Generate random ER graph with uniformly random edge weights
g = igraph::erdos.renyi.game(100, 0.1)
igraph::E(g)$weight <- runif(length(igraph::E(g)))
#Sparsify g via LANS
S = lans(g, alpha = 0.3, output = "undirected", directed = FALSE)
#Convert sparsifier to edge list
S_List = simplifyNet::Mtrx_EList(S, directed = FALSE)
sg = simplifyNet::net.as(S_List, net.to="igraph", directed=FALSE)
igraph::ecount(sg)/igraph::ecount(g)#fraction of edges in the sparsifier

10 net.as

Mtrx_EList Adjacency matrix to edge list

Description

Convert an adjacency matrix to an edge list.

Usage

Mtrx_EList(A, directed = FALSE)

Arguments

A Weighted adjacency matrix.

directed Specifies if the network is directed or undirected. Default is set to undirected.

Value

An edge list, E_List, of adjacency matrix, A, of the form | n1 | n2 | weight |.

Author(s)

Alexander Mercier

net.as Network format converter

Description

Convert a network in weighted adjacency matrix, edge list, or igraph to a weighted adjacency matrix,
edge list, or igraph format.

Usage

net.as(network, net.to = "E_List", directed = FALSE)

Arguments

network Weighted adjacency matrix, weighted igraph network, or edge list formatted |
n1 | n2 | weight | with colnames c("n1", "n2", "weight").

net.to Specifics to what format the imputed network is to be converted:
(1) ’E_List’ convert to an edge list of the format | n1 | n2 | weight | with colnames
c("n1", "n2", "weight").
(2) ’Adj’ convert to a weighted adjacency matrix.
(3) ’igraph’ convert to a weighted igraph object.

directed If TRUE, specifies that the inputted network is directed. Default is FALSE.

net.as 11

Value

A network of the format specified by net.to.

Author(s)

Alexander Mercier

Index

bestpath, 2

EffR, 3
EffRSparse, 4
EList_Mtrx, 6

gns, 6

irefit, 7

lans, 8

Mtrx_EList, 10

net.as, 10

12

	bestpath
	EffR
	EffRSparse
	EList_Mtrx
	gns
	irefit
	lans
	Mtrx_EList
	net.as
	Index

